Abstract

Single-crystalline, octahedral CeO2:Eu3+ nanocrystals, successfully prepared using a simple hydrothermal method, were investigated to determine their photovoltaic properties in an effort to enhance the light-harvesting efficiency of dye-sensitized solar cells (DSSCs). The size of the CeO2:Eu3+ nanocrystals (300-400 nm), as well as their mirrorlike facets, significantly improved the diffuse reflectance of visible light. Excitation of the CeO2:Eu3+ nanocrystal with 330 nm ultraviolet light was re-emitted via downconversion photoluminescence (PL) from 570 to 672 nm, corresponding to the 5D0→7FJ transition in the Eu3+ ions. Downconversion PL was dominant at 590 nm and had a maximum intensity for 1 mol % Eu3+. The CeO2:Eu3+ nanocrystal-based DSSCs exhibited a power conversion efficiency of 8.36%, an increase of 14%, compared with conventional TiO2 nanoparticle-based DSSCs, because of the strong light-scattering and downconversion PL of the CeO2:Eu3+ nanocrystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.