Abstract

AbstractMicrowave detectors play a crucial role in modern technological applications, but traditional detectors suffer from limited functionality, limited detection accuracy, and difficulties in large‐scale deployment. This study proposes a dual‐function microwave detector based on metamaterials, capable of simultaneously measuring microwave power and polarization angle. The detector consists of a metal disc with 12 concave grooves, a dielectric layer, a metal reflector, and a resistive network. The designed detector achieves efficient absorption of 93.54% of microwave energy, with 75.4% dissipated in the resistive component and converted into heat. By detecting the temperature using a thermocouple thermometer, the incoming wave power can be determined, and by discriminating between different resistive temperatures, the polarization angle of the incoming wave can be identified. Simulation and experimental results demonstrate the outstanding detection efficiency and stability of this detector. It exhibits a linear response to different incident power densities and polarization angles, showing potential application value in the field of microwave wireless power transmission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.