Abstract

Quantum phase estimation is an important component in diverse quantum algorithms. However, it suffers from spectral leakage, when the reciprocal of the record length is not an integer multiple of the unknown phase, which incurs an accuracy degradation. For the existing single-sample estimation scheme, window-based methods have been proposed for spectral leakage mitigation. As a further advance, we propose a dual-frequency estimator, which asymptotically approaches the Cramer-Rao bound, when multiple samples are available. Numerical results show that the proposed estimator outperforms the existing window-based methods, when the number of samples is sufficiently high.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.