Abstract

Miniaturised transceivers are essential in multiband wireless communication systems for higher data rates and low power consumption. Microelectromechanical system (MEMS) resonator filters are actively considered for deployment in transceivers for radio frequency and intermediate frequency (IF) signal filter and oscillator applications. In this study, the authors propose dual frequency capacitive transduced MEMS resonator with two-port electrical configuration. Clamped-clamped beam resonator was selected to serve as a basic resonant tank for the filter concept validation. Five design strategies low loss structural material, array design, mixed electrical and mechanical coupling scheme, sub-micro meter transduction gap and large transduction area were explored. With these strategies, the device achieves dual band filter characteristics, narrow pass band, desired bandwidth, low insertion loss and better stop band rejection. Dual frequency response of the proposed resonator is demonstrated at centre frequencies 400 kHz and 2.57 MHz with a narrow pass band of 3 and 20 kHz, respectively. Low insertion loss of 19.8 and 25.6 dB for frequencies centred at 400 kHz and 2.57 MHz, respectively and stop band rejection >35 dB was achieved. The proposed MEMS resonator may be incorporated in the implementation of dual band pass filter for IF signal filter and dual frequency oscillator applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.