Abstract

A dual-frequency direct detection Doppler lidar is demonstrated using a superconducting nanowire single-photon detector (SNSPD) at 1.5μm. The so-called double-edge technique is implemented by using a dual-frequency laser pulse, rather than using a double-channel Fabry-Perot interferometer. Such a modification to the reported lidars enhances the frequency stability in the system level. Using the time-division multiplexing method, only one piece of SNSPD is used in the optical receiver, making the system simplified and robust. The SNSPD is adopted to enhance the temporal resolution since it offers merits of high quantum efficiency, low dark count noise, no after-pulsing probability, and a high maximum count rate. Two telescopes that point westward and northward at a zenith angle of 30° are used to detect the line-of-sight wind components, which are used to synthesize the horizontal wind profile. Horizontal wind profiles up to an altitude of about 2.7km are calculated with vertical spatial/temporal resolution of 10m/10s. Wind dynamic evolution and vertical wind shears are observed clearly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call