Abstract

Signal instability due to temperature fluctuations, sensor degradation, and debonding introduces additional amplitude loss in the detected signals during acousto-ultrasonic detection, which may be falsely attributed to defects in a structure. First, we determined that the amplitudes of both high-frequency and low-frequency Lamb waves decrease after propagation through a damaged area. Then, we found that the amplitude ratio of such waves not only exhibits a downward trend but is also immune to fluctuations in the input signals. A qualitative numerical expression was proposed to explain this phenomenon, and preliminary experiments were conducted to demonstrate that the amplitude ratio is an effective parameter for mitigating instability in signal detection. Particularly, the number of impacts on a composite laminate was evaluated with respect to changes in the input signal amplitude. Notably, this method can be further simplified by designing a dual-frequency input signal. After conclusively validating the performance of the novel method in a composite subjected to temperature fluctuations, we conclude that the proposed acousto-ultrasonic detection method is robust in mitigating signal instability, and that it yields reliable information for damage evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.