Abstract

PurposeLittle is known about the in vivo forces and stresses on grafts used in anterior cruciate ligament (ACL) reconstruction. The aims of this study were to evaluate and compare the forces and stresses on grafts used in anatomical single-bundle ACL reconstruction at different locations of the femoral footprint (anterior vs middle vs posterior; high vs middle vs low) during a lunge motion.MethodsEstablish subject-specific finite element models with different graft’s tunnel loci to represent the primary ACL reconstructions. A displacement controlled finite element method was used to simulate lunge motions (full extension to ~ 100° of flexion) with six-degree-of-freedom knee kinematics data obtained from the validated dual fluoroscopic imaging techniques. The reaction force of the femur and maximal principal stresses of the grafts were subsequently calculated during knee flexion.ResultsIncreased and decreased graft forces were observed when the grafts were located higher and lower on the femoral footprint, respectively; anterior and posterior graft placement did not significantly affect the graft force. Lower and posterior graft placement resulted in less stress on the graft at higher degrees of flexion; there were no significant differences in stress when the grafts were placed from 0° to 30° of flexion on the femoral footprint.ConclusionThe proposed method is able to simulate knee joint motion based on in vivo kinematics. The results demonstrate that posterior to the centre of the femoral footprint is the strategic location for graft placement, and this placement results in anatomical graft behaviour with a low stress state.

Highlights

  • Anterior cruciate ligament (ACL) reconstruction is a technical procedure

  • The graft force was significantly affected by the graft placement locations in the higher–lower direction (P < 0.001)

  • At high degrees of flexion, the high location led to a consistently larger force; the middle location led to anatomical graft behaviour similar to that of a normal knee, while the low location led the graft force to decrease early to nearly zero

Read more

Summary

Introduction

Anterior cruciate ligament (ACL) reconstruction is a technical procedure. Because new anatomical findings of the ACL femoral footprint have emerged [2, 3], studies on anatomical ACL reconstruction have been conducted recently, and they have shown that anatomical graft placement is important to restore normal ACL function [4]. The graft force needs to be considered to restore normal ACL function. Measuring the forces on native ACLs continues to be one of the greatest challenges in assessing the biomechanics of the knee joint. To overcome this challenge, investigators have proposed a technique involving the isolation of the tibial attachment of the cruciate ligament by

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call