Abstract
Epigenetic regulation as a means for bacterial adaptation is receiving increasing interest in the last decade. Significant efforts have been directed towards understanding the mechanisms giving raise to phenotypic heterogeneity within bacterial populations and its adaptive relevance. Phenotypic heterogeneity mostly refers to phenotypic variation not linked to genetic differences nor to environmental stimuli. Recent findings on the relevance of phenotypic heterogeneity on some bacterial complex traits are causing a shift from traditional assays where bacterial phenotypes are defined by averaging population-level data, to single-cell analysis that focus on bacterial individual behavior within the population. Fluorescent labeling is a key asset for single-cell gene expression analysis using flow cytometry, fluorescence microscopy, and/or microfluidics.We previously described the generation of chromosome-located transcriptional gene fusions to fluorescent reporter genes using the model bacterial plant pathogen Pseudomonas syringae. These fusions allow researchers to follow variation in expression of the gene(s) of interest, without affecting gene function. In this report, we improve the analytic power of the method by combining such transcriptional fusions with constitutively expressed compatible fluorescent reporter genes integrated in a second, neutral locus of the bacterial chromosome. Constitutively expressed fluorescent reporters allow for the detection of all bacteria comprising a heterogeneous population, regardless of the level of expression of the concurrently monitored gene of interest, thus avoiding the traditional use of stains often incompatible with samples from complex contexts such as the leaf.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.