Abstract
Reliable recovery of transmission parameters is of paramount importance not only for radio frequency receivers, but also for optical wireless communication solutions. This paper discusses a feedback algorithm for recovering the symbol timing in the context of a bandlimited optical intensity link. The link is determined by a PAM scheme and pulse shaping with squared raised cosine or double jump functions. When preambles or pilot sequences are not available to the receiver, non-data-aided (blind) recovery concepts are useful for tracking smaller variations of the timing error affecting the payload data. The current state-of-the-art solution uses a Gardner detector with two samples per symbol, although this introduces a non-negligible amount of inter-symbol interference resulting in an error floor. To avoid this drawback, the authors propose a dual-filter approach which includes an appropriately designed filter operated in parallel to the receiver filter. Despite the additional complexity of the dual-filter architecture, the recovery loop is very simple and requires only one sample per symbol, representing the lowest degree of complexity in this respect. Open-loop characteristic, jitter performance, and acquisition behavior of the suggested recovery loop are investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.