Abstract

Tumor hypoxia is a noteworthy impediment to effective photodynamic therapy (PDT), as it would sharply weaken the effectiveness of oxygen-dependent PDT. To enable effective PDT in both hypoxia as well as normoxia circumstances, here, we report a multifunctional nanoreactor (C3N4/MnO2 NPs), which guarantees effective type-II PDT (oxygen-dependent) in hypoxia by in situ oxygen generation via the Fenton reaction. In addition, the C3N4/MnO2 NPs can also be used for oxygen-independent type-I PDT by evolving the cytotoxic hydroxyl radical to reduce reliance on intracellular oxygen content. In vitro cytotoxicity assays made evident that the C3N4/MnO2 NPs exhibit a much higher cancer-cell-killing ability than C3N4 NPs not only in normoxia but also in hypoxic circumstances. The smart integration of type-I and type-II PDT into the therapeutic nanoplatform enables effective PDT even though intracellular oxygen is not satisfactory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.