Abstract
How the surface state (SS) develops and how the spin transport in a curved cylindrical topological insulator nanowire have attracted theoretical attention recently. However, experimental confirmation for the SS in such a real modeling system still remains insufficient. Here we carried out a systematic comparative study on the cylindrical single-crystal Bi2Te3 nanowires of various diameters, and report unambiguously dual evidence for the Dirac SS. Both the predicted anomalous Aharonov-Bohm (AB) quantum oscillations with a period of h/e in H// and the 1/2-shifted Shubnikov-de Haas (SdH) oscillations (i.e., γ = −1/2) in H⊥ were indentified below 1.4 K. In addition, Altshuler-Aronov-Spivak (AAS)-like oscillations with a period of h/2e and ordinary SdH oscillations with γ = 0 were also resolved. These data provide clear evidence of coexistence of the nontrivial topological Dirac state and trivial electron state on the surface of topological insulator nanowire.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.