Abstract
The emergence of multidrug-resistant bacteria is a global health threat necessitating the discovery of new antibacterials and novel strategies for fighting bacterial infections. We report first-in-class DNA gyrase B (GyrB) inhibitor/ciprofloxacin hybrids that display antibacterial activity against Escherichia coli. Whereas DNA gyrase ATPase inhibition experiments, DNA gyrase supercoiling assays, and in vitro antibacterial assays suggest binding of the hybrids to the E. coli GyrA and GyrB subunits, an interaction with the GyrA fluoroquinolone-binding site seems to be solely responsible for their antibacterial activity. Our results provide a foundation for a new concept of facilitating entry of nonpermeating GyrB inhibitors into bacteria by conjugation with ciprofloxacin, a highly permeable GyrA inhibitor. A hybrid molecule containing GyrA and GyrB inhibitor parts entering the bacterial cell would then elicit a strong antibacterial effect by inhibition of both the GyrA and GyrB subunits of DNA gyrase and potentially slow bacterial resistance development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.