Abstract

Enzymes provide a class of potential options to treat cancer, while the precise regulation of enzyme activities for effective and safe therapeutic actions has been poorly reported. Dual-enzyme decorated semiconducting polymer nanoagents for second near-infrared (NIR-II) photoactivatable ferroptosis-immunotherapy are reported in this study. Such nanoagents (termed SPHGA) consist of hemoglobin (Hb)-based semiconducting polymer (SP@Hb), adenosine deaminase (ADA) and glucose oxidase (GOx) with loadings in a thermal-responsive nanoparticle shell. NIR-II photoactivation of SPHGA results in the generation of heat to trigger on-demand releases of two enzymes (ADA and GOx) via destroying the thermal-responsive nanoparticle shells. In the tumor microenvironment, GOx oxidizes glucose to form hydrogen peroxide (H2O2), which promotes the Fenton reaction of iron in SP@Hb, resulting in an enhanced ferroptosis effect and immunogenic cell death (ICD). In addition, ADA degrades high-level adenosine to reverse the immunosuppressive microenvironment, thus amplifying antitumor immune responses. Via NIR-II photoactivatable ferroptosis-immunotherapy, SPHGA shows an improved effect to absolutely remove bilateral tumors and effectively suppress tumor metastases in subcutaneous 4T1 breast cancer models. This study presents a dual-enzyme-based nanoagent with controllable therapeutic actions for effective and precise cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call