Abstract

Herein, a series of enantiocomplementary polyesters with either (S)- or (R)-configurations were successfully prepared by applying a dual-enzyme biocatalytic system. In the step of Baeyer-Villiger oxidation, cyclohexanone monooxygenase from Acinetobacter sp. NCIMB 9871 (CHMOAcineto) was engineered rationally to tailor the enantiopreference of mutants, providing (S)- and (R)-lactones, respectively, with high optical purities (up to 99% ee) as polymeric precursors. By subsequent enzymatic ring-opening polymerization of the enantiopure monomers, enantiocomplementary polyesters with high molecular weight (up to 21.8 kDa Mn) were synthesized by lipase CALB/MML. Our research offers an environmentally friendly synthesis route for the production of optically pure lactones and chiral polyesters, which are of particular significance for their application in organic syntheis or biomedical materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.