Abstract

Stimulated by the introduction of clinical dual source CT, the interest in dual energy methods has been increasing in the past years. Whereas the potential of material decomposition by dual energy methods is known since the early 1980ies, the realization of dual energy methods is a wide field of today's research. Energy separation can be achieved with energy selective detectors or by varying X-ray source spectra. This paper focuses on dual energy techniques with varying X-ray spectra. These can be provided by dual source CT devices, operated with different kVp settings on each tube. Excellent spectral separation is the key property for use in clinical routine. The drawback of higher cost for two tubes and two detectors leads to an alternative realization, where a single source CT yields different spectra by fast kVp switching from reading to reading. This provides access to dual-energy methods in single source CT. However, this technique comes with some intrinsic limitations. The maximum X-ray flux is reduced in comparison to the dual source system. The kVp rise and fall time between each reading reduces the spectral separation. In comparison to dual source CT, for a constant number of projections per energy spectrum the temporal resolution is reduced; a reasonable trade of between reduced numbers of projection and limited temporal resolution has to be found. The overall dual energy performance is the guiding line for our investigations. We present simulations and measurements which benchmark both solutions in terms of spectral behavior, especially of spectral separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.