Abstract

Barely visible impact damage from low-velocity impacts have been studied as critical design factors of composite structures. In this article, a dual-energy wave subtraction algorithm using an ultrasonic propagation imaging system is proposed to evaluate barely visible impact damage as a strategy of fast in situ nondestructive evaluation or structural health monitoring (SHM). The ultrasonic propagation imaging system is a type of nondestructive evaluation or SHM system and is based on scanning laser-induced guided ultrasound and fixed sensors. The amplitude of ultrasonic signals generated by the ultrasonic propagation imaging system increases with the increasing energy of the laser beam. Two ultrasonic signals generated by different excitation energies of the laser beam can be equalized by multiplying a constant factor to one of them. Therefore, the residuals after subtraction of two signals may be close to zero. However, the two different energy induced signals in the damaged area will be nonzero due to the change in material conditions regarding the laser ultrasonic generation mechanism. The dual-energy wave subtraction algorithm eliminates most of the incident ultrasonic waves and amplifies anomalous waves. A composite wing skin including two barely visible impact damages as well as a composite sandwich panel, including a single barely visible impact damage, were inspected to validate the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.