Abstract

We investigate the feasibility of dual-energy method for image contrast enhancement in small animal studies using a low kV X-ray radiographic system. A robust method for X-ray spectrum estimation from transmission measurements, based on expectation-maximization (EM) method, is applied to an X-ray specimen radiographic system for dual energy imaging of a mouse. From transmission measurements of two known attenuators at two different X-ray tube voltages, the X-ray energy spectra are reconstructed using the EM-based method. From the spectra information thus obtained, the transmission data for bone and soft tissue in terms of various thicknesses are generated. Two polynomial functions of transmission data are then sought for to fit the inverted thicknesses of bone and soft-tissue. Scatters in cone-beam projection data acquired at two X-ray energies were corrected. From the scatter-corrected data, a bone thickness map is separated from a soft-tissue thickness map by use of the polynomial functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call