Abstract

Dual energy computed tomography (DECT) is currently a subject of extensive investigation. DECT is currently implemented using either a dual source scanner with high and low kVp data acquired from separate sources or a single source scanner with both high and low kVp data acquired in an alternating manner. Both methods require dedicated hardware to enable data acquisition and image reconstruction for DECT. In this paper, we present a method to enable DECT using a single x-ray source with a slow kVp switching data acquisition. The enabling reconstruction technique allowing for the reduction in slew rate is the prior image constrained compressed sensing (PICCS) algorithm. When a slow kVp switching data acquisition method is used, the projection data with high and low kVp values are undersampled and the conventional filtered backprojection (FBP) image reconstruction does not enable streaking artifact-free images for material decomposition in DECT. In this paper, all of the acquired high and low kVp projection data were used to generate a prior image using the conventional FBP method. The PICCS algorithm was then used to reconstruct both high and low kVp images to enable material decomposition in the image domain. Both numerical simulations and physical phantom experimental studies were conducted to validate the proposed DECT scheme. The results demonstrate that a slew rate corresponding to 123 views at high and low kVp (high and low kVp values used for dual energy decomposition) is sufficient for the PICCS-based DECT method. In contrast, the slew rate should be high enough to obtain over 500 projections at each kVp for artifact-free reconstruction using an FBP-based DECT method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call