Abstract

Dual-energy CT (DECT) has been available for more than 15 years and has undergone continuous technical development and refinement. Recently, the first photon-counting CT scanner became clinically available and has the potential to further expand the possibilities of spectral imaging. Numerous studies on DECT have been published since its creation, highlighting the clinical applications of the various reconstructions enabled by DECT. The aim of this focused review is to succinctly summarize basic principles and available technical concepts of DECT and to discuss established applications relevant to the daily clinical routine. DECT is instrumental for a broad variety of clinical use cases. While some DECT applications can enhance day-to-day clinical practice, others are still subject to broad-scale validation and should therefore be handled with restraint in the clinical routine. · Virtual monoenergetic images, virtual unenhanced images, and iodine maps are the most well-investigated and relevant dual-energy CT reconstructions for clinical application.. · Low-keV virtual monoenergetic images (VMIs) yield superior image and iodine contrast, which can be leveraged for improved vessel assessment and lesion conspicuity, or to reduce contrast media or radiation dose. VMIs at intermediate energies can serve as a replacement for conventional grey-scale images. VMIs at high keV enable efficient artifact reduction, which can be further optimized in combination with dedicated metal artifact reduction algorithms.. · Iodine maps and virtual unenhanced images can improve lesion detection in oncologic imaging and enable lesion assessment in monophasic CT examinations, which may allow a reduction of correlative and follow-up imaging..

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call