Abstract

The purpose of this review is to summarize the principles and applications of dual-energy CT in evaluation of the brain and the intracranial blood vessels. One major advantage of dual-energy CT is the capability of material differentiation. In general, this property can be applied to bone removal in CT angiography for easier and faster postprocessing. In neuroradiology, material decomposition allows detection of hemorrhage on contrast-enhanced CT scans and facilitates the search for the underlying pathologic mechanism of hematomas. The combination of low radiation dose and advantageous spectral information (blood vs contrast) from these datasets justifies broad clinical implementation of dual-energy CT in neuroradiology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.