Abstract

The charge flux balance and interfacial optimization are two core concerns when simplifying blue thermally activated delayed fluorescence (TADF) diodes, which reflects the more stringent demand on carrier transporting materials (CTM) as the embodiment of the contradiction between charge transportation and quenching suppression with the opposite requirement on intermolecular interactions. Herein, phenylbenzimidazole (PBI) was used as the core substituted with two diphenylphosphine oxide (DPPO) groups to form six dual-encapsulated charge–exciton separation (CES)-type electron transporting materials (ETM) with the collective name of xyPBIDPO. Through tuning the substitution positions of DPPO group, its two functions of resonance and steric effects were integrated and optimized to enhance charged moiety encapsulation without cost of reducing electroactivity. As the result, among xyPBIDPO, mmPBIDPO successfully realizes the balance of favorable electrical performance and interfacial interaction suppressions in...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.