Abstract

Reactive oxygen species play a pivotal role in liver disease, contributing to severe liver damage and chronic inflammation. In liver injury driven by inflammation, adenosine-5'-triphosphate (ATP) and hypochlorite ion (ClO-) emerge as novel biomarkers, reflecting mitochondrial dysfunction and amplified oxidative stress, respectively. However, the dynamic fluctuations of ATP and ClO- in hepatocytes and mouse livers remain unclear, and multidetection techniques for these biomarkers are yet to be developed. This study presents RATP-NClO, a dual-channel fluorescent bioprobe capable of synchronously detecting ATP and ClO- ions. RATP-NClO exhibits excellent selectivity and sensitivity for ATP and ClO- ions, demonstrating a dual-channel fluorescence response in a murine hepatocyte cell line. Upon intravenous administration, RATP-NClO reveals synchronized ATP depletion and ClO- amplification in the livers of mice with experimental metabolic dysfunction-associated steatohepatitis (MASH). Through a comprehensive analysis of the principal mechanism of the developed bioprobe and the verification of its reliable detection ability in both in vitro and in vivo settings, we propose it as a unique tool for monitoring changes in intracellular ATP and ClO- level. These findings underscore its potential for practical image-based monitoring and functional phenotyping of MASH pathogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call