Abstract

Herein, we develop a novel method to synthesize lanthanide-functionalized carbon quantum dots via free-radical copolymerization using the methyl methacrylate (MMA) monomer as a functional monomer and introducing a lanthanide complex to obtain the dual-emission fluorescent composite material FCQDs-Ln(TFA)3 (Ln = Eu, Tb; TFA: trifluoroacetylacetone). The obtained composites were fully characterized, and their structures were investigated by Fourier transform infrared spectroscopy (FTIR), 1H NMR spectroscopy, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Subsequently, a series of white-light-emitting polymer composite films FCQDs- (Eu:Tb)(TFA)3/poly(methyl methacrylate) (PMMA) were designed and synthesized by adjusting the ratio of Eu(TFA)3/Tb(TFA)3 under different wavelengths. More significantly, FCQDs-Tb(TFA)3 was selected as a sensitive probe for sensing metal cations due to excellent photoluminescence properties, revealing a unique capability of FCQDs-Tb(TFA)3 of detecting Fe(III) cations with high efficiency and selectivity. Furthermore, the sensing experiment results indicated that FCQDs-Tb(TFA)3 is ideal as a fluorescent nanoprobe for Fe3+ ion detection, and the lowest detection limit for Fe3+ is 0.158 μM, which is superior to many other previous related research studies. This pioneering work provides a new idea and method for constructing a dual-emission ratio sensor based on carbon quantum dots and also extends the potential application in the biological and environmental fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call