Abstract
A series of rhenium(I) diimine complexes cis,trans-[Re(dmb)(CO)(2)(PR(1)R(2)R(3))(PR(4)R(5)R(6))](+) (dmb=4,4'-dimethyl-2,2'-bipyridine, R(n)=phenyl or alkyl), each of which bears two phosphine ligands with various numbers of phenyl groups, has been synthesized by using the photochemical ligand-substitution reaction. Detailed studies of the structural features, not only in the crystal but also in solution, indicate that the number of phenyl groups is a crucial factor in controlling the rotational conformation of the phosphine ligands, which in turn determines the extent of the π-π interaction between the aromatic diimine ligand and the phenyl group(s). The π-π interaction strongly affected both electrochemical and photophysical properties: 1) the oxidation power of the Re complex became stronger, 2) the lifetime of the excited state became longer, and 3) the Stokes shift between the (1) MLCT absorption band and emission from the corresponding (3) MLCT excited state became smaller. In particular, the diphenyl and triphenyl phosphine had much greater influence on the properties than the monophenyl phosphine ligand. Dual emission was observed from the different rotational conformers of the complexes with an intermediate number of phenyl groups in the phosphine ligands.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.