Abstract

In this article, we present a kind of dual-emission fluorescent nanothermometer, which is made of europium (Eu3+)-doped silicon nanoparticles (Eu@SiNPs), allowing the detection of intracellular temperature in living cells with high accuracy. In particular, the presented SiNP-based thermometer features dual-emission fluorescence (blue (455 nm) and red (620 nm) emission), negligible toxicity (cell viability of treated cells remains above 90% during 24 h of treatment) and robust photostability in living cells (i.e., preserving >90% of fluorescence intensity after 45 min of continuous UV irradiation). More significantly, the fluorescence intensity of the Eu@SiNPs exhibits a linear ratiometric temperature response in a broad range from 25 to 70 °C. Taking advantage of these attractive merits, the Eu@SiNP-based nanothermometer is able to accurately (∼4.5% change per °C) determine dynamic changes in intracellular temperature in a quantitative and long-term (i.e., 30 min) manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.