Abstract
Dual emission carbon dots have a high potential for use as fluorescence-based sensors with higher selectivity and sensitivity. This study demonstrated the possibility of conversion of a biological molecular system with a single emission peak to a double emission carbon dots system. This report is the first to describe the synthesis of dual emission carbon dots by tuning the electronic environment of a conjugated system. Here we prepared carbon dots from a natural extract, from which carotenoids were used as a new source for carbon dots. Formation of the carbon dots was confirmed by images obtained under a transmission electron microscope as well as from a dynamic light scattering study. The prepared carbon dots system was characterized and its optical property was monitored. The study showed that, after irradiation with microwaves, the fluorescence intensity of the whole system changed, without any change in the original peak position of the carotenoid but with the appearance of an additional peak. A Fourier transform infrared study confirmed breaking of the conjugated system. When using ethylene glycol as a surface passivating agent added to these carotenoid carbon dots, the dual emission spectra became more distinct.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.