Abstract

Afterglow carbon dots (CDs) have been extensively studied for sensing and anticounterfeiting because they can effectively block out the interference of background light. In this work, m-APBA CDs are obtained hydrothermally with m-aminophenylboric acid (m-APBA) and different kinds of inorganic salts (IS). When m-APBA CDs are combined with CaCl2 and MgCl2, dual-emission afterglow can be achieved based on CaCl2 and MgCl2 having the strongest aggregation ability, high charge density, structural confinement, and defects with respect to m-APBA CDs. The as-obtained CDs@CaCl2 exhibits a dual mode afterglow with a quantum yield of 4.81% and lifetimes of 352 ms (delayed fluorescence) and 205 ms (phosphorescence). The afterglow of CDs@IS can be excited by both UV and visible light at the same time, which could be recorded for about 8 and 4 s. This unique method of inducing the m-APBA CD afterglow has the advantages of simple synthesis, low cost, and adjustable afterglow emission. Moreover, CDs@IS showed exceptional performance in anticounterfeiting and temperature sensing, further establishing its practical utility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.