Abstract

The first aim of the study was to determine the reduction in electrode impedances using dual electrode stimulation compared with single electrode stimulation in the new Nucleus CI24RE receiver-stimulator. The CI24RE is connected to the Nucleus 22-electrode intracochlear array. Dual electrode stimulation is produced by electrically coupling two adjacent single electrodes. The second aim was to determine whether dual electrode stimulation produced pitch percepts that were intermediate to the pitch of the two adjacent single electrodes. Eight postlingually hearing-impaired adults with severe to profound loss, implanted with the CI24RE, participated in the study. Electrode impedances were measured by using the standard telemetry function of the system. A pitch ranking task was used to measure pitch for dual and single electrodes. Seven sets of three electrodes along the electrode array were tested. Each set of electrodes consisted of a dual electrode and the two adjacent single electrodes. Pitch ranking was measured using a two-alternative forced choice procedure, with the three electrodes in each set paired with each other as AB and BA pairs. The subject indicated which of the two stimuli had the higher pitch. Random variation in current level was used to remove any loudness cues. The average electrode impedance was 38.6% lower for dual electrodes compared with single electrodes. Three subjects were able to successfully rank the three electrodes in each set in the expected tonotopic order for all seven sets of electrodes along the array. Three other subjects were able to rank sets of electrodes in the tonotopic order for most of the tested positions on the array. The remaining two subjects gave more variable pitch ranking across positions along the array, although successful tonotopic ranking was demonstrated for several sets of electrodes. Dual electrode stimulation with the CI24RE receiver-stimulator produced systematically lower electrode impedances and was capable of producing pitch percepts that were intermediate to those produced by the corresponding adjacent single electrodes. This makes available up to 43 channels of stimulation from 22 single electrodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call