Abstract

We report a precision realization of photonic thermometry using dual-comb spectroscopy to interrogate a π-phase-shifted fiber Bragg grating. We achieve readout stability of 7.5 mK at 1 s and resolve temperature changes of similar magnitude-sufficient for most industrial applications. Our dual-comb approach enables rapid sensing of dynamic temperature, and our scalable and reconfigurable electro-optic generation scheme enables a broad sensing range without laser tuning. Reproducibility on the International Temperature Scale of 1990 is tested, and ultimately limited by the frequency reference and check-thermometer stability. Our demonstration opens the door for a universal interrogator deployable to multiple photonic devices in parallel to potentially unravel complex multi-physical quantity measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.