Abstract

PFASs and chlorinated solvents are the common co-contaminants in soil and groundwater at firefighter training areas (FTAs). Although PFASs mixtures could have adverse impacts on bioremediation of trichloroethylene (TCE) by inhibiting Dehalococcoides (Dhc), little is known about the effect and contribution of PFOA or PFOS on dechlorination of TCE by non-Dhc organohalide-respiring bacteria (OHRB). To study this, PFOA and PFOS were amended to the growth medium of a non-Dhc OHRB-containing enrichment culture to determine the impact on dechlorination. This study demonstrated that high levels of PFOA or PFOS (100 mg L–1) inhibited TCE dechlorination in four non-Dhc OHRB-containing community including Geobacter, Desulfuromonas, Desulfitobacterium, and Dehalobacter, but low levels of PFOA or PFOS (≤10 mg L–1) enhanced TCE dechlorination. Four non-Dhc OHRB were less inhibited by PFOA than that by PFOS, and high level of PFOS killed Desulfitobacterium and Dehalobacter and decreased the biodiversity of bacterial community. Although most fermenters were killed by the presence of 100 mg L–1 PFOS, two important co-cultures (Desulfovibrio and Sedimentibacter) of OHRB were enriched, indicating that the syntrophic relationships between OHRB and co-cultures still remained, and PFOA or PFOS inhibited TCE dechlorination by directly repressing non-Dhc OHRB. Our results highlight that the bioattenuation of chloroethene contamination could be confounded by non-Dhc OHRB in high levels of PFOS contaminated subsurface environments at FTAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call