Abstract

Infantile spasms, with an incidence of 1.6 to 4.5 per 10,000 live births, are a relentless and devastating childhood epilepsy marked by severe seizures but also leads to lifelong intellectual disability. Alarmingly, up to 5% of males with this condition carry a mutation in the Aristaless-related homeobox ( ARX ) gene. Our current lack of human-specific models for developmental epilepsy, coupled with discrepancies between animal studies and human data, underscores the gap in knowledge and urgent need for innovative human models, organoids being one of the best available. Here, we used human neural organoid models, cortical organoids (CO) and ganglionic eminences organoids (GEO) which mimic cortical and interneuron development respectively, to study the consequences of PAE mutations, one of the most prevalent mutation in ARX . ARX PAE produces a decrease expression of ARX in GEOs, and an enhancement in interneuron migration. That accelerated migration is cell autonomously driven, and it can be rescued by inhibiting CXCR4. We also found that PAE mutations result in an early increase in radial glia cells and intermediate progenitor cells, followed by a subsequent loss of cortical neurons at later timepoints. Moreover, ARX expression is upregulated in COs derived from patients at 30 DIV and is associated with alterations in the expression of CDKN1C . Furthermore, ARX PAE assembloids had hyperactivity which were evident at early stages of development. With effective treatments for infantile spasms and developmental epilepsies still elusive, delving into the role of ARX PAE mutations in human brain organoids represents a pivotal step toward uncovering groundbreaking therapeutic strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.