Abstract
Sodium butyrate (Btr) (3 mM) causes a 10-fold increase in production of the glycoprotein hormone alpha-subunit in HeLa cells. The following report demonstrates that this response could be inhibited about 95% by 5 mM 2-deoxy-D-glucose (dGlc), whereas alpha-subunit production in uninduced cells was affected little or not at all. Addition of D-mannose restored the Btr induction of Hela-alpha in cultures that had been treated with dGlc. When the alpha-subunits secreted by cells cultured in Btr plus dGlc or in Btr alone were compared by gel filtration (Sephadex G-75) and lectin affinity (concanavalin A and ricin) chromatography, differences were noted that probably reflect changes in their carbohydrate moieties. Immunoprecipitation of [35S]methionine-labeled HeLa-alpha and incubation with endoglycosidase H indicated that the subunit secreted from cells in the presence of dGlc contained oligosaccharide side chains that were not processed to the complex type. Cells that were simultaneously treated with Btr plus dGlc showed no increase in alpha-subunit production over cells receiving Btr only; in contrast, cells that were preincubated with Btr for either 16 or 36 h before dGlc was added exhibited high levels of subunit synthesis. Measurement of alpha-mRNA levels at various times after Btr and dGlc were added to cultures indicated that Btr brought about a dramatic increase in alpha-specific mRNA about 24 h after being added to cultures. This increase could be prevented by dGlc when added simultaneously with Btr but not when added after a 24-h preincubation. Although dGlc prevented the induction of alpha-subunit and alpha-mRNA in response to Btr, it had no effect on histone hyperacetylation, suggesting that if this chromatin modification is necessary for the induction process, it is not in itself sufficient. Together, the data demonstrate that dGlc inhibits the accumulation of alpha-subunit mRNA normally produced in response to Btr and that the subunit produced contains altered oligosaccharide constituents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.