Abstract

Polycyclic aromatic hydrocarbons (PAHs) are embryo- and cardiotoxic to fish that might be associated with improper intracellular Ca2+ management. Since sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) is a major regulator of intracellular Ca2+, the SERCA activity and the contractile properties of rainbow trout (Oncorhynchus mykiss) ventricle were measured in the presence of 3- and 4-cyclic PAHs. In unfractionated ventricular homogenates, acute exposure of SERCA to 0.1–1.0 μM phenanthrene (Phe), retene (Ret), fluoranthene (Flu), or pyrene (Pyr) resulted in concentration-dependent increase in SERCA activity, except for the Flu exposure, with maximal effects of 49.7–83 % at 1 μM. However, PAH mixture did not affect the contractile parameters of trout ventricular strips. Similarly, all PAHs, except Ret, increased the myotomal SERCA activity, but with lower effect (27.8–40.8 % at 1 μM). To investigate the putative chronic effects of PAHs on SERCA, the atp2a2a gene encoding trout cardiac SERCA was expressed in human embryonic kidney (HEK) cells. Culture of HEK cells in the presence of 0.3–1.0 μM Phe, Ret, Flu, and Pyr for 4 days suppressed SERCA expression in a concentration-dependent manner, with maximal inhibition of 49 %, 65 %, 39 % (P < 0.05), and 18 % (P > 0.05), respectively at 1 μM. Current findings indicate divergent effects of submicromolar PAH concentrations on SERCA: stimulation of SERCA activity in acute exposure and inhibition of SERCA expression in chronic exposure. The depressed expression of SERCA is likely to contribute to the embryo- and cardiotoxicity of PAHs by depressing muscle function and altering gene expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call