Abstract
Atomic force microscopy, Thioflavin T (ThT) fluorescence assay, circular dichroism spectroscopy, differential scanning calorimetry, and molecular modeling techniques have been employed to investigate the amyloid aggregation of insulin in the presence of non-ionic detergent, Triton X-100 (TX-100). In contrast to recently described inhibition of lysozyme amyloid formation by non-ionic detergents (Siposova, 2017), the amyloid aggregation of insulin in the presence of sub-micellar TX-100 concentration exhibits two dissimilar phases. The first, inhibition phase, is observed at the protein to detergent molar ratio of 1:0.1 to 1:1. During this phase, the insulin amyloid fibril formation is inhibited by TX-100 up to ∼60%. The second, "morphological" phase, is observed at increasing detergent concentration, corresponding to protein:detergent molar ratio of ∼1:1 - 1:10. Under these conditions a significant increase of the steady-state ThT fluorescence intensities and a dramatically changed morphology of the insulin fibrils were observed. Increasing of the detergent concentration above the CMC led to complete inhibition of amyloidogenesis. Analysis of the experimental and molecular modeling results suggests an existence of up to six TX-100 binding sites within dimer of insulin with different binding energy. The physiological relevance of the results is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.