Abstract

Recently, Graph Convolution Network (GCN) and Temporal Convolution Network (TCN) are introduced into traffic prediction and achieve state-of-the-art performance due to their good ability for modeling the spatial and temporal property of traffic data. In spite of having good performance, the current methods generally focus on the traffic measurement of road segments, i.e. the nodes of traffic flow graph, while the edges of the graph, which represent the correlation of traffic data of different road segments and form the affinity matrix for GCN, are usually constructed according to the structure of road network, but the spatial and temporal properties are not well exploited in their theories. In this paper, we propose a Dual Dynamic Spatial-Temporal Graph Convolution Network (DDSTGCN), which not only models the dynamic property of the nodes of the traffic flow graph but also captures the dynamic spatial-temporal feature of the edges by transforming the traffic flow graph into its dual hypergraph. The traffic prediction is enhanced by the collaborative convolutions on the traffic flow graph and its dual hypergraph. The proposed method is evaluated by extensive traffic prediction experiments on six real road datasets and the results show that it outperforms state-of-the-art related methods. Source codes are available at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/j1o2h3n/DDSTGCN</uri> .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.