Abstract

Thermosetting epoxy resins with high strength, high toughness, and recyclability are strongly sought after, but due to crosslinked structure, balancing strength and toughness and achieving degradation and reprocessing of resins is a challenge. Enhancing strength without compromising toughness during designing recyclable epoxy resin is a challenging task. Herein, a solution is demonstrated where isofluorodioxanone diisocyanate (IPDI), Poly (propylene glycol) bis(2-aminopropyl ether) (D230), and naturally occurring vanillin synthesized a novel imine-functionalized epoxy monomer (IDV-EP), and cured with diamino-diphenylmethane (DDM), 2-(4-aminophenyl)-1H-benzimidazol-5-amine (APBIA) and 4, 4-diamino benzoyl triphenylamine (DABA), respectively, for the purpose of building different contents of the sacrificial hydrogen-bonding clusters (SHBC) in topological network structures. As the hydrogen-bonding (H-bonding) binding energy of the crosslinked network increases, the strength and toughness of the resin were increased concurrently, SHBC was demonstrated to be a feasible method to achieve the strength-toughness trade-off of thermosets, in which IDV-EP-DABA illustrated a tensile strength of 90 MPa, an elongation at break of 16.5%, as well as toughness of 9.73 MJ/m3, which was higher than that of the ordinary bisphenol A-type epoxy thermosetting resin (DGEBA/DDM) by 1.8, 3.7 as well as 6.7 times, respectively. Furthermore, the covalent adaptive networks (CANs) formed by imine bonds provide the resins with effective capabilities for swift degradation (rapid degradation in acid/solvent, room temperature and static conditions) and reprocessing (only a slight decrease in the mechanical properties after hot pressed at 180°C/10 MPa for 15 minutes) , showcasing promising prospects for sustainable utilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.