Abstract

To recycle polyurethane and extend the service life of polyurethane-modified emulsified asphalt, this study developed novel perspectives for a lower carbon-footprint and cleaner preparation of recyclable polyurethane (RWPU) and its modified emulsified asphalt (RPUA-x) by using self-emulsification and dual dynamic bonds. Particle dispersion and zeta potential tests reflected that the emulsions of RWPU and RPUA-x existed excellent dispersion and storage stability. Microscopic and thermal analyses indicated that RWPU possessed dynamic bonds and maintained thermal stability below 250 °C as anticipated. Concurrently, RWPU provided RPUA-x with a strong physical cross-linking network, and a homogeneous phase was observed in RPUA-x after drying. Self-healing and mechanical evaluation results revealed that the regeneration efficiencies of RWPU were 72.3 % (stress) and 100 % (strain), respectively, and the stress-strain healing efficiency of RPUA-x was >73 %. The energy dissipation performance and plastic damage principle of RWPU were investigated using cyclic tensile loading. The multiple self-healing mechanisms of RPUA-x were revealed through microexamination. Furthermore, the viscoelasticity of RPUA-x and variations in flow activation energy were determined based on Arrhenius fitting from dynamic shear rheometer tests. In conclusion, disulfide bonds and hydrogen bonds endow RWPU with remarkable regenerative properties and grant RPUA-x with both asphalt diffusion self-healing and dynamic reversible self-healing capabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.