Abstract

The design and development of a smart bioadhesive hydrogel sealant with self-healing and excellent antibacterial activity to achieve high wound closure effectiveness and post-wound-closure care is highly desirable in clinical applications. In this work, a series of adhesive antioxidant antibacterial self-healing hydrogels with promising traits were designed through dual-dynamic-bond cross-linking among ferric iron (Fe), protocatechualdehyde (PA) containing catechol and aldehyde groups and quaternized chitosan (QCS) to enable the closure of skin incisions and promotion of methicillin-resistant Staphylococcus aureus (MRSA)-infected wound healing. The dual-dynamic-bond cross-linking of a pH-sensitive coordinate bond (catechol-Fe) and dynamic Schiff base bonds with reversible breakage and re-formation equips the hydrogel with excellent autonomous healing and on-demand dissolution or removal properties. Additionally, the hydrogel presents injectability, good biocompatibility and antibacterial activity, multifunctional adhesiveness, and hemostasis as well as NIR responsiveness. The in vivo evaluation in a rat skin incision model and infected full-thickness skin wound model revealed the high wound closure effectiveness and post-wound-closure care of the smart hydrogels, demonstrating its great potential in dealing with skin incisions and infected full-thickness skin wounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call