Abstract

A novel in situ N and low-valence-state Mo dual doping strategy was employed to significantly improve the conductivity, active-site accessibility, and electrochemical stability of MoO3 , drastically boosting its electrochemical properties. Consequently, our optimized N-MoO3-x nanowires exhibited exceptional performances as a bifunctional anode material for both fiber-shaped asymmetric supercapacitors (ASCs) and microbial fuel cells (MFCs). The flexible fiber-shaped ASC and MFC device based on the N-MoO3-x anode could deliver an unprecedentedly high energy density of 2.29 mWh cm(-3) and a remarkable power density of 0.76 μW cm(-1) , respectively. Such a bifunctional fiber-shaped N-MoO3-x electrode opens the way to integrate the electricity generation and storage for self-powered sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.