Abstract

To achieve personalized recommendations, the recommender system selects the items that users may like by learning the collected user–item interaction data. However, the acquisition and use of data usually form a feedback loop, which leads to recommender systems suffering from popularity bias. To solve this problem, we propose a novel dual disentanglement of user–item interaction for recommendation with causal embedding (DDCE). Different from the existing work, our innovation is we take into account double-end popularity bias from the user-side and the item-side. Firstly, we perform a causal analysis of the reasons for user–item interaction and obtain the causal embedding representation of each part according to the analysis results. Secondly, on the item-side, we consider the influence of item attributes on popularity to improve the reliability of the item popularity. Then, on the user-side, we consider the effect of the time series when obtaining users’ interest. We model the contrastive learning task to disentangle users’ long–short-term interests, which avoids the bias of long–short-term interests overlapping, and use the attention mechanism to realize the dynamic integration of users’ long–short-term interests. Finally, we realize the disentanglement of user–item interaction reasons by decoupling user interest and item popularity. We experiment on two real-world datasets (Douban Movie and KuaiRec) to verify the significance of DDCE, the average improvement of DDCE in three evaluation metrics (NDCG, HR, and Recall) compared to the state-of-the-art model are 5.1106% and 4.1277% (MF as the backbone), 3.8256% and 3.2790% (LightGCN as the backbone), respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.