Abstract

Zero Shot learning (ZSL) aims to use the information of seen classes to recognize unseen classes, which is achieved by transferring knowledge of the seen classes from the semantic embeddings. Since the domains of the seen and unseen classes do not overlap, most ZSL algorithms often suffer from domain shift problem. In this paper, we propose a Dual Discriminative Auto-encoder Network (DDANet), in which visual features and semantic attributes are self-encoded by using the high dimensional latent space instead of the feature space or the low dimensional semantic space. In the embedded latent space, the features are projected to both preserve their original semantic meanings and have discriminative characteristics, which are realized by applying dual semantic auto-encoder and discriminative feature embedding strategy. Moreover, the cross modal reconstruction is applied to obtain interactive information. Extensive experiments are conducted on four popular datasets and the results demonstrate the superiority of this method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.