Abstract

Peri-implant aseptic inflammation and osteolysis can cause aseptic loosening, leading to the failure of implants. Therefore, aseptic loosening of orthopedic implants remains an imminent problem for the development of durable and effective implants. In this work, a common anti-inflammatory drug (aspirin, ASA) was loaded in poly(lactic-co-glycolic acid) (PLGA) to construct nanofiber coatings on titanium (Ti) via electrospinning. The adhesion of the nanofiber coatings to Ti was ensured by polydopamine (PDA) modification. A stable and sustainable release of aspirin from the nanofiber coatings could last up to 60 days. Such electrospun PLGA@ASA nanofiber coatings could promote proliferation and osteogenic differentiation of bone mesenchymal stem cells (BMSCs) as well as inhibit M1 polarization and RANKL-induced osteoclast differentiation of macrophages in vitro. These results indicated that this facile formulation of the PLGA@ASA nanofiber coatings for long-term drug release could be expected to address the problem of aseptic loosening effectively in dual directions of both anti-inflammation and improving osseointegration simultaneously. Notably, the in vivo experiments demonstrated that PLGA@ASA nanofiber coatings did promote osseointegration ability of Ti implants significantly, even in challenging condition with wear particles, and also effectively inhibited Ti particle induced osteolysis around the implants. This work indicates a promising way for the development of durable and effective implants by using PLGA@ASA-PDA-Ti to address the problem of aseptic loosening in dual directions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.