Abstract

Stanene has been predicted to be a two-dimensional topological insulator, providing an ideal platform for the realization of quantum spin Hall effect even at room temperature. Based on first-principles calculations, we studied the topological edge states in zigzag chlorinated stanene nanoribbon. From our calculations, dual Dirac points can be found near Fermi level. One Dirac point is localized at the edges and emerges in a narrow nanoribbon, while another is widespread and can only be found in a wide nanoribbon due to the coupling of two opposite edges. At the localized Dirac point, there is an interesting odd–even oscillated energy gap with the change of the width of nanoribbon. The energy gaps at both Dirac points and the coupling of two opposite edges can be modified by edge adsorption. Asymmetric adsorption of two edges was also discussed. Our calculations may be helpful for the potential applications of tin-based topological nanoribbons in nanodevices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call