Abstract

The emphasis on periodontal regeneration has been shifted towards the harmonization of bioactive molecules and physiological phases during regeneration. This study investigated whether the combination and sequential-release of platelet-derived growth factor (PDGF, mitogen) and simvastatin (differentiation factor) facilitated periodontal regeneration. PDGF and simvastatin were encapsulated in double-walled poly-( d,l-lactide) and poly-(d,l-lactide-co-glycolide) (PDLLA-PLGA) microspheres using the co-axial electrohydrodynamic atomization technique. Critical-sized periodontal defects on rat maxillae were filled with microspheres encapsulating BSA-in-core-shell (BB), PDGF-in-shell (XP), simvastatin-in-core and BSA-in-shell (SB), simvastatin-in-core and PDGF-in-shell, or unfilled with microspheres (XX), and examined at 14 and 28 days post-operatively. The resultant microspheres were around 15 μm diameter with distinct core–shell structure, and the fast-release of PDGF followed by slow-release of simvastatin was noted in the SP group. The SP group demonstrated significantly greater bone volume fraction and decreased trabecular separation compared to the XX group at day 14, and milder inflammatory cells infiltration and elevated tartrate-resistant acid phosphatase level were noted at day 28. Fibers were also well-aligned and obliquely inserted onto the root surface similar to native periodontal ligament with signs of cementogenesis in the SP group. In conclusion, the combination and sequential-release of PDGF-simvastatin accelerates the regeneration of the periodontal apparatus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call