Abstract
Introducing additional physical and reversible crosslinks to a chemically crosslinked hydrogel is an interesting and viable alternative to increase the toughness of a hydrogel. Yet while in general the physical crosslink points provide dissipative mechanisms, there are still many details that are unknown in particular on the role that physical crosslinks play on the large strain behavior. We explore the mechanical properties in small and large strain of two dual crosslink gels made from a random copolymer of poly(acrylamide-co-vinylimidazole) with a range of elastic moduli in the tens of kPa. The interaction between vinylimidazole groups and metal ions (Zn2+ and Ni2+) results in physical crosslink points and in a markedly stretch-rate-dependent mechanical behavior. While a main relaxation process is clearly visible in linear rheology and controls the small and intermediate strain properties, we find that the strain hardening behavior at stretches of λ > 4 and the stretch at break λb are controlled by an additional longer-lived physical crosslinking mechanism that could be due to a clustering of physical crosslinks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.