Abstract

One critical issue to phosphoric acid (PA) doped high-temperature proton exchange membranes (HT-PEMs) is to balance the proton conductivity and mechanical properties for overall application performance in fuel cells. Addressing the issue, we prepare durable HT-PEMs having the dual crosslinking structure by employing poly(vinylimidazole-divinylbenzene-styrene) (poly(VIm-DVB-St)) copolymer as a crosslinker and using the poly (aromatic ether ketone) (PAEK) polymer containing four methyl groups as the host membrane matrix. The imidazole groups of poly(VIm-DVB-St) react with benzyl bromide groups of brominated PAEK for both the primary cross-linking network and high PA doping. The divinylbenzene crosslinked poly (styrene-co-vinylimidazole) network generates the secondary cross-linking structure. The formed reticular polymer chain structure brings on low swelling and high mechanical strength of the HT-PEMs. The fuel cell based on the acid doped PAEK41-85%VIm/233.0 PA shows a H2-air fuel cell peak power density of 306 mW cm−2 at 200 °C without back pressure, and a low degradation rate of 3.9 × 10−5 V h−1 during a period of 600 h under a constant current density of 200 mA cm−2 at 160 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.