Abstract

Genetic technology using site-specific recombinases, such as the Cre-loxP system, has been widely employed for labeling specific cell populations and for studying their functions in vivo. To enhance the precision of cell lineage tracing and functional study, a similar site-specific recombinase system termed Dre-rox has been recently used in combination with Cre-loxP. To enable more specific cell lineage tracing and ablation through dual recombinase activity, we generated two mouse lines that render Dre- or Dre+Cre-mediated recombination to excise a stop codon sequence that prevents the expression of diphtheria toxin receptor (DTR) knocked into the ubiquitously expressed and safe Rosa26 locus. Using different Dre- and Cre-expressing mouse lines, we showed that the surrogate gene reporters tdTomato and DTR were simultaneously expressed in target cells and in their descendants, and we observed efficient ablation of tdTomato+ cells after diphtheria toxin administration. These mouse lines were used to simultaneously trace and deplete the target cells of interest through the inducible expression of a reporter and DTR using dual Cre and Dre recombinases, allowing a more precise and efficient study of the role of specific cell subsets within a heterogeneous population in pathophysiological conditions in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.