Abstract

The original dual Craig-Bampton method for reducing and successively coupling undamped substructured systems is extended to the case of arbitrary viscous damping. The reduction is based on the equations of motion in state-space representation and uses complex free interface normal modes, residual flexibility modes, and state-space rigid body modes. To couple the substructures in state-space representation, a dual coupling procedure based on the interface forces between adjacent substructures is used, which is novel compared to other methods commonly applying primal coupling procedures in state-space representation. The very good arbitrary viscous damping of the dual Craig-Bampton approach is demonstrated on a beam structure with localized dampers. The results are compared to a classical Craig-Bampton approach for damped systems showing the potential of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.