Abstract

We present the design of a microstructured dual-core optical fiber with integrated electrodes and filled with liquid crystals. The dual-core structure acts as a directional coupler whose properties depend on the liquid crystal alignment. We show that with four electrodes and two separate driving voltages below 30 V on the electrodes, the beam-splitting properties of the fiber can be controlled independently and continuously for the two polarization components, thus allowing for the realization of any arbitrary 2 × 2 transfer function, such as tunable polarizers, polarization-dependent attenuators, or polarization-independent beam splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.