Abstract
Most optimization methods for logistic regression or maximum entropy solve the primal problem. They range from iterative scaling, coordinate descent, quasi-Newton, and truncated Newton. Less efforts have been made to solve the dual problem. In contrast, for linear support vector machines (SVM), methods have been shown to be very effective for solving the dual problem. In this paper, we apply coordinate descent methods to solve the dual form of logistic regression and maximum entropy. Interestingly, many details are different from the situation in linear SVM. We carefully study the theoretical convergence as well as numerical issues. The proposed method is shown to be faster than most state of the art methods for training logistic regression and maximum entropy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.